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Abstract

In this study, a technique is presented for
developing constitutive models for polymer composite
systems reinforced with single-walled carbon nanotubes
(SWNT). Because the polymer molecules are on the
same size scale as the nanotubes, the interaction at the

polymer/nanotube interface is highly dependent on the
local molecular structure and bonding. At these small
length scales, the lattice structures of the nanotube and
polymer chains cannot be considered continuous, and
the bulk mechanical properties can no longer be
determined through traditional micromechanical
approaches that are formulated by using continuum
mechanics. It is proposed herein that the nanotube, the
local polymer near the nanotube, and the
nanotube/polymer interface can be modeled as an
effective continuum fiber using an equivalent-
continuum modeling method. The effective fiber serves
as a means for incorporating micromechanical analyses
for the prediction of bulk mechanical properties of
SWNT/polymer composites with various nanotube
shapes, sizes, concentrations, and orientations. As an
example, the proposed approach is used for the
constitutive modeling of two SWNT/LaRC-SI (with a
PmPV interface) composite systems, one with aligned
SWNTs and the other with three-dimensionally
randomly oriented SWNTs. The Young's modulus and
shear modulus have been calculated for the two systems
for various nanotube lengths and volume fractions.

Introduction

In the last five years, nano-structured, non-
metallic materials have spurred considerable interest in
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the materials community partly due to their potential for
large gains in mechanical and physical properties as
compared to standard structural materials. In particular,
carbon nanotube-reinforced polymer composites may
provide order-of-magnitude increases in strength and
stiffness when compared to typical carbon-fiber
reinforced polymeric composites. In order to facilitate
the development of nanotube-reinforced polymer
composites, constitutive relationships must be
developed that predict the bulk mechanical properties
of the composite as a function of molecular structure of
the polymer, nanotube, and polymer/nanotube interface.

For simplicity, it is desirable to couple an
equivalent-continuum model of a nanotube/polymer
composite with established micromechanical models to
describe the mechanical behavior. As outlined by
McCullough, 1'2 numerous micromechanical models

have been developed to predict the macroscopic
behavior of composite materials reinforced with typical
reinforcement fibers. These micromechanical models

assume that the fiber, matrix, and sometimes, the
interface, are continuous materials and the constitutive
equations for the bulk composite material are
formulated based on assumptions of continuum
mechanics. However, a typical SWNT may have a
diameter of approximately 1-10xl 0 -9 meters compared
to the typical carbon-fiber diameter of 50x10 -6meters.
Even though a limited number of studies have
addressed the applicability of micromechanics to
nanotube-reinforced polymer composites, 3'4 it appears
that the direct use of micromechanics for nanotube

composites is complicated by effects associated with
the significant size difference between a nanotube and a
typical carbon fiber, as described below.

Atomistic simulation is one approach that can be
used to investigate behavior of materials at the
nanometer length scale. Recently, Wise and Hinkley 5
used molecular dynamics simulations to address the

polymer/SWNT material response for a SWNT
surrounded by polyethylene molecules. They predicted
that the local changes in the polymer molecular
structure and the non-functionalized polymer/SWNT
interface are on the same length-scale as the width of
the nanotube. The magnitude of this localized effect is
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not presently known and needs to be accurately

modeled to ensure that the full load-transfer capabilities

of the polymer/SWNT composite is accounted for in

both stiffness and strength calculations.

The first step towards calculation of bulk

stiffness and strength is to establish a constitutive
model that can be used in a continuum mechanics

formulation. A fundamental assumption in continuum

mechanics is that the mass, momentum, and energy can

be represented in a mathematical sense by continuous

functions, that is, independent of length scale.

In this paper, a technique for developing

constitutive models for SWNT-reinforced polymer

composite materials is proposed which is based on

extensions of the equivalent-continuum modeling

technique developed by Odegard et al. 6 The modeling

technique takes into account the discrete nature of the

atomic interactions at the nanometer length scale and

the interfacial characteristics of the nanotube and the

surrounding polymer matrix. After the constituent

materials used in this paper are discussed in detail, the

development of the constitutive model using the

presented technique is described. First, a model of the

molecular structure of the nanotube and the adjacent

polymer chains is established by using the atomic
structure that has been determined from molecular

dynamics (MD) simulations. Second, an equivalent-

continuum model is developed in which the mechanical

properties are determined based on the force constants

that describe the bonded and non-bonded interactions of

the atoms in the molecular model and reflect the local

polymer and nanotube structure. Finally, the

equivalent-continuum model is used in

micromechanical analyses to determine the bulk

constitutive properties of the SWNT/polymer

composite with aligned and random nanotube

orientations and with various nanotube lengths and
volume fractions.

Constituent materials

The constitutive model developed in this study is

for a carbon nanotube/LaRC-SI composite with a

PmPV interface. The properties of the constituent
materials are described below.

Carbon nanotube

In 1991 Iijima 7 obtained transmission electron

micrographs of elongated, nano-sized carbon particles

that consisted of cylindrical graphitic layers, known

today as carbon nanotubes. Because of their high inter-

atomic bond strength and perfect lattice structure, a

Young's modulus as high as 1 TPa and a tensile

strength approaching 100 GPa have been measured for

single-walled carbon nanotubes (SWNT). 8 These

properties, in addition to their relatively low density,

make SWNT an ideal candidate as a reinforcing
constituent.

Nanotube/polvmer interface

In a molecular dynamics study of

SWNT/polymer materials, Frankland et al. 9 addressed

the effects of covalent bonds at the SWNT/polymer

interface. They have shown that for

nanotube/polyethylene composites there is a one to two

order-of-magnitude increase in the interfacial shear

strength for composites with covalent bonding between

the nanotube and adjacent polymer molecules relative

to systems without the covalent bonds. However, other
studies 1°'11 have shown that because the covalent

bonding may significantly affect the properties of the

nanotube itself, it is desirable to increase the load

transfer between the nanotube and polymer by using

improved non-covalent bonding methods. For example,

it has been shown that PmPV molecules [poly(m-

phenylenevinylene) substituted with octyloxy chains]

naturally wrap around carbon nanotubes in a helical

pattern. 11 This wrapping allows for an improved

nanotube/polymer molecule interaction through non-

covalent bonded interactions, and thus improved load

transfer at the nanotube/polymer interface, compared to

those found with traditional structural polymers.

Because the PmPV polymer molecules will likely

entangle themselves with neighboring structural

polymer molecules (such as polyimides and epoxies),

the PmPV can be used as a highly effective interface

between the nanotube and structural polymer, and is

used as the interface in the present study.

Polvmer

The polymer used in this study is LaRC-SI, a

thermoplastic polyimide that has been shown to have

good mechanical properties for various processing and

testing conditions.12-15 The properties of LaRC-SI used

in this study have been taken from Whitley et al. 15 for

LaRC-SI with a 3% stoichiometric imbalance at room

temperature. The Young's modulus and Poisson's ratio

are 3.8 GPa and 0.4, respectively.

Molecular potential ener_¢

The bonded and non-bonded interactions of the

atoms in a molecular structure can be quantitatively

described by using molecular mechanics. The forces

that exist for each bond, as a result of the relative

atomic positions, are described by the force field.

These forces contribute to the total molecular potential

energy of a molecular system. In general, the

molecular potential energy for a nano-structured

material is described by the sum of the individual

energy contributions in the molecular model: 16
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bond bond bond bond bond

where E o, E °, E _, and E _ are the energies associated

with bond stretching, angle variation, torsion, and

inversion, respectively, and E _b is the energy of the

non-bonded interactions, which includes van der Waals

and electrostatic effects (Fig. 1). The individual energy

contributions are summed over the total number of

corresponding interactions in the molecular model.

Various functional forms may be used for these energy

terms depending on the particular material and loading
conditions considered. 16

In this study, the total molecular potential energy
of the molecular model is taken to be:

2 (_ 2Em=ZKS(oo-Po)+ZKo(oo-oo)
a a

__ Z DIJ IZ/oalJ /12 __ ( OIJ /6 1

o Lz\po) \p.)l

(2)

where the terms Pa and ®a refer to the undeformed

interatomic distance of bond number a and the

undeformed bond-angle number a, respectively. The

quantities 9, and O, are the distance and bond-angle

after stretching and angle variance, respectively. The

symbols K S and K2 represent the force constants

associated with the stretching and angle variance of

bond and bond-angle number a, respectively. The well

depth and natural van der Waals distance for interaction

a are given by, respectively:

D IJ = D_ I . D Ja a

pjJ =_'p]

(3)

where the superscripts I and J denote the two atoms
involved in an individual van der Waals interaction.

Only the bond stretching, bond-angle variation, and van

der Waals parameters were considered in Eq. (2) since

the remaining energy terms in Eq. (1) were found to

have a negligible contribution to the total molecular

potential energy. The molecular structure of a single

unit of the PmPV molecule is shown in Fig. 2. The

values of the force constants, well depths, and natural

van der Waals distances, equilibrium bond lengths, and

equilibrium bond angles associated with the atoms

shown in Fig. 2 are listed in Tables 1-3.

Molecular dynamics simulation

The Molecular Dynamics (MD) technique has

become an effective tool for studying the physics of

condensed matter systems in which t]ae forces acting on

particles in a defined cell are calculated and the classical

Newtonian equations of motion are solved numerically. 17-

19 In general, each particle is allowed to interact with all

the other particles in t]ae simulation.

In the present study, a MD simulation was used

to generate the equilibrium structure of the composite

system, which consisted of a (6,6) single-walled

nanotube and five PmPV oligimers, each ten repeating

units in length. The initial structure was constructed by

placing the nanotube at the center of the MD cell, and

by inserting the PmPV molecules at random, non-

overlapping positions within the MD cell. This sample

was equilibrated for approximately 500ps at 800K and

500 atm of hydrostatic pressure to relax the initial

configuration and compress the system to an

appropriate density. This initial procedure was

followed by an additional 500ps of simulation at 300K

and 1 atm of pressure. By the end of the final

equilibration run, the total energy and density had

stabilized. No constraints were placed on the periodic

MD cell shape or size.

The parameters used in the MD simulation are

listed in Tables 1-3, with the atom labels defined in Fig.

2. All parameters, other than those involving the

oxygen atom were taken from the OPLS-AA force field

developed by Jorgensen and coworkers. 2°-22 Parameters

for the ether linkage were adapted from the MM3 force
field. 2s-2s All simulations were carried out with the

TINKER ® 3.826 molecular modeling package. The

resulting molecular model is shown on the left side of

Fig. 3.

Equivalent-continuum modelin_

The equivalent-continuum model of the

composite material can be developed based on the

equilibrium molecular structure obtained with the MD

simulation by using the methods of Odegard et al. 6

This approach relies on an equivalent-continuum

modeling technique that is used to predict the bulk
mechanical behavior of nano-structured materials. In

summary, the method consists of two major steps.

First, a suitable representative volume element (RVE)
of the nano-structured material is chosen. The RVE of

a typical nano-structured material is on the nanometer

length scale, therefore, the material of the RVE is not

continuous, but is an assemblage of many atoms.
Interaction of these atoms is described in terms of

molecular mechanics force constants, which are known

for most atomic structures. 16 Second, an equivalent-

continuum model of the RVE is developed in which the
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total strain energy in the molecular and equivalent-

continuum models, under identical loading conditions,

is equal. The effective mechanical properties, or the

effective geometry, of the equivalent-continuum is then

determined from equating strain energies.

For the most general approach, an equivalent-

truss model of the RVE may be developed as an

intermediate step to link the molecular and equivalent-
continuum models. Each atom in the molecular model

is represented by a pin-joint, and each truss element

represents an atomic bonded or non-bonded interaction.

The moduli of the truss elements are based on the

molecular mechanics force constants. Therefore, the

total molecular potential energy of the molecular model

and the strain energy of the equivalent-truss are equal

for the same loading conditions.

Truss model

In traditional molecular models, the atomic

lattice has been viewed as an assemblage of discrete

masses that are held in place with atomic forces that

resemble elastic springs. 27 The mechanical analogy of

this model is a pin-jointed truss model in which each

truss member represents either a bonded or non-bonded

interaction between atoms. Therefore, the truss model

allows the mechanical behavior of the nano-structured

system to be accurately modeled in terms of

displacements of the atoms. The deformation of each

bonded or non-bonded interaction corresponds to the

axial deformation of the corresponding truss element.

The total mechanical strain energy, E t , of the

truss model is:

Et=_b_a_lra-Ra )
(4)

where Aband yb are the cross-sectional area and
a a

Young's modulus of rod a of truss member type b,

respectively. The term r b -R b is the stretching of rod aa a

of truss member type b, where R b and r b are the
a a

undeformed and deformed lengths of the truss elements,

respectively.

In order to represent the mechanical behavior of

the molecular lattice model with the truss model, Eq.

(4) must be equated with Eq. (2) in a physically

meaningful manner. Both equations are the sum of

energies for particular degrees of freedom. The main

difficulty in the substitution is specifying Eq. (4), which

has stretching terms only, for Eq. (2), which also has

bond-angle variance and van der Waals terms.

It was shown by Odegard et al. 6 that for small

deformations, the Young's moduli of the rods

representing primary bonds and the bond-angle

variance interactions may be determined as a function
of the force constants:

Y2 - 2K_Rj (5)
A2

32<(Yo_ - _ _ sin
AaRa

(6)

where K pa, K °_ , (9 are the same parameters

associated with Eq. (2), and the superscripts o_ and 13

indicate primary bonding and bond-angle variance

interactions, respectively.

Upon examination of Eq. (2), it is clear that the

energy associated with van der Waals interactions is

highly non-linear with respect to interatomic distance.

The determination of the Young's moduli of truss

elements that represent van der Waals interactions is

complicated by accounting for this non-linearity and the

large range of values for the interatomic distance of the

interacting atoms in an equilibrium configuration.

Therefore, linear relationships for the Young's

modulus, such as those given by Eqs. (5) and (6), are
not realistic for the van der Waals interactions.

To address this problem, the energy associated

with the van der Waals interaction given in Eq. (2) and

the strain energy of a truss element given by Eq. (4)

were equated. The Young's modulus that represents
the mechanical stiffness of a van der Waals interaction

is given by:

2uDu !( DaJ /12 ( 1 ]y8 Pa a P. TJ 6

° A2(po_p J/2 po) <po; j
(7)

where the superscript 8 indicates van der Waals

bonding. Clearly, the Young's modulus is highly

dependent on the interatomic spacing. However,

because of the difficulty of assigning an individual

Young's modulus value for every van der Waals

interaction in a nano-structured material, discrete values

of Young's modulus may be approximated for ranges of

interatomic spacing for each combination of atoms

based on Eq. (7). The process for establishing these

ranges is discussed below.

To implement the resultant equivalent-truss

structure, a finite element model was developed by

using ANSYS ® 6 28 (Fig. 3). Each element (L1NK8)

was a three-dimensional pin-jointed truss element with

six degrees of freedom (three displacement components

on each end) that represented a single atomic

interaction. Each node corresponded to an atom in the
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equilibrium structure of the molecular model. A total

of 14,501 elements and 1818 nodes were used in the
model.

Continuum model

With the equivalent-truss structure in place, the

continuum model could be constructed. The geometry

of the homogeneous, equivalent-continuum RVE was

assumed to be cylindrical, similar to that of the

molecular and truss models (Fig. 3). With this

approach, the mechanical properties of the solid

cylinder were determined by equating the total strain

energies of the equivalent-truss and equivalent-

continuum models under identical loading conditions.

Examination of the molecular model revealed that it

was accurately described as having transversely

isotropic symmetry, with the plane of isotropy

perpendicular to the long axis of the nanotube. There

are five independent material parameters required to

determine the entire set of elastic constants for a

transversely isotropic material. Each of the five

independent parameters may be determined from a

single boundary condition applied to both equivalent-

truss and equivalent-continuum models. Once the

mechanical properties of the equivalent-continuum

RVE are determined, then the model may be used in

subsequent micromechanical analyses as an effective

fiber. The method employed in this study was adapted

from the approach used by Hashin and Rosen 29 to

determine elastic properties for fiber reinforced

composite materials.
Effective fiber constitutive model

The constitutive relationship of the transversely

isotropic equivalent-continuum RVE (which is referred

to as the effective fiber throughout the remainder of the

paper) is:

--cf_0- _k_ek_ (8)

where _,j and ek/ are the stress and strain components,

respectively (i] = 1,2,3), and C_k/ are the elastic

stiffness components of the effective fiber (denoted by

superscript]). Alternatively, Eq. (8) can be simplified

by using the usual contracted notation for the elastic

stiffness components and transversely-isotropic

symmetry:

f f q- cfI_331_11 = CllI_ll -]- _121_22

_ f f _fI_331_22 -- _121_11 q- _221_22 q-

1_33 : cfl_ll q- cfI_22 q- cfI_33

_12 = 2C_g12

1_13 = 2C4S13

o23:(cL-c )<3

(9)

Five independent elastic properties may be chosen to

describe the complete set of elastic stiffness

components, namely, the elastic stiffness component,

C_, and four elastic parameters: transverse shear

modulus, G/, transverse bulk modulus (also known as

the plane-strain bulk modulus), Krs , longitudinal shear

modulus, G[, and longitudinal Young's modulus, Y[.

The four elastic parameters are related to the elastic

stiffness components by:

K/:-}(cL

Y/ : C f 2Cl f2

cL+

(10)

Conversely, the elastic stiflhess components can be

described in terms of the four elastic parameters:

: cf
: ci +Ki

cf f f= K_ -G_

1

<

(11)

At this point, both the elastic parameters and the elastic

stiffness components are unknown. These values are

determined by applying five identical sets of boundary

conditions to the equivalent-truss model and the

effective fiber, and by subsequently equating the strain

energies by adjusting the five independent elastic

properties. Boundary conditions must be chosen to

yield unique values for the independent elastic

properties.

Boundary conditions

Fives sets of boundary conditions were chosen to

determine each of the five independent elastic

properties such that a single property could be

independently determined for each boundary condition.
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The displacementsand tractionsappliedat the
boundariesof theRVEaregeneralized,respectively,
by:

u; (S) = e,jxj (12)

T (S) = (y,jnj (13)

Material property summary

For an effective fiber diameter, D, of 1.8 nm and

length, L, of 3.2 nm, the calculated values of the five

independent parameters and the resulting elastic

stiffness tensor components for the effective fiber

calculated from Eq. (1 1) are listed in Table 5.

Mieromeehanieal analysis

where S is the bounding surface, _ is defined in Fig. 3,

and nj are the components of the outward normal to S.

The generalized total strain energy of the effective fiber
is:

Es V _J)2L
= -- - cyj_,j (14)2 cyUe'J 8

where V, D, and L are the volume, diameter, and length

of the effective fiber, respectively (Fig. 3). The

boundary conditions and strain energies for each of the

five independent elastic properties are listed in Table 4.

Boundary region

The displacements and tractions specified in

Table 4 were applied to each node in the boundary

region of the equivalent-truss model (indicated in Fig.

3), and the corresponding strain energies were

calculated by summing the strain energies of each
individual truss member in the RVE.

To determine the size of the boundary region, it

was assumed that the range of the boundary region is
related to the interatomic distance between the

minimum non-bonded spacing found in the equilibrium

structure to the maximum distance for which a positive-

definite relationship exists between the force and

displacement. It was also assumed that the contribution

of the energies associated with van der Waals forces

between atoms with a larger distance than this

maximum were relatively small and could be neglected.
The recent MD simulation of a SWNT

surrounded by polyethylene molecules performed by

Wise and Hinkley, 5 predicted that the local changes in

the polymer molecular structure and the non-

functionalized polymer/SWNT interface are on the

same length scale as the width of the nanotube. This

recent study and the aforementioned assumptions led to

the selection of a boundary region that extends to a
radius of 0.9 nm measured from the center of the

nanotube to the outer edge of the molecular model (Fig.

3). Within the 0.9 nm radius, the RVE includes the

nanotube, nanotube/polymer interface, and polymer

molecules immediately adjacent to the interface.

Constitutive models of the effective

fiber/polymer composite may be developed with a

micromechanical analysis by using the mechanical

properties of the effective fiber and the bulk polymer

matrix material. For the composite considered in this

study, the PmPV molecules that were near the

polymer/nanotube interface were included in the

effective fiber, and it was assumed that the matrix

polymer surrounding the effective fiber had mechanical

properties equal to those of the bulk LaRC-SI resin.

Because the bulk LaRC-SI polymer molecules and the

polymer molecules included in the effective fiber are

physically entangled, perfect bonding between the

effective fiber and the surrounding polymer matrix was

assumed.

The micromechanics-based Mori-Tanaka

method 3°'31 was used to predict the elastic mechanical

properties of the composite material considered herein.

For this method, the complete elastic stiffness tensor for

the composite with transversely isotropic inclusions is

given by: 32

C m
C=( mC _-cf{cfAf})(CmI_-cf{Af}) 1 (15)

where cf and cm are the fiber and matrix volume

fractions, respectively, I is the identity tensor, C m is the

stiffness tensor of the matrix material, Cf is the stiffness

tensor of the fiber, and Af is the dilute mechanical

strain-concentration tensor for the inclusion:

=[,+scol(c _co/l1 (16)

The tensor S is Eshelby's tensor, as given by Eshelby 33

and Mura. 34 The bracketed terms in Eq. (15) indicate

inclusion orientation averaging of the bracketed tensor.

For unidirectional-aligned inclusions, the orientation

averaging in Eq. (15) is not necessary, and the resulting

elastic stiffness components of the composite have

transversely isotropic symmetry. For three-dimensional

randomly oriented inclusions, the bracketed terms are

given by Qui and Weng. 32 The resulting stiffness

components for this case have isotropic symmetry.

For the effective fiber/polymer composite

considered in the present study, the elastic stiffness

components, volume fraction, length, and orientation of

6
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the effective fiber were used for the inclusion properties

in Eqs. (15) and (16). The effective fibers were

assumed to have an ellipsoidal geometry for the

Eshelby tensor in Eq. (16) so that both long and short
effective fibers could be considered. The effective fiber

length was adjusted by varying the inclusion aspect

ratio while holding the diameter constant. The elastic

stiffness components and volume fraction of LaRC-SI

were used for the matrix properties. The overall

composite stiffness was calculated for various effective

fiber lengths and volume fractions for both cases of

perfectly aligned and three-dimensional randomly

oriented effective fibers (Fig. 4).

Results

In this section, the moduli of the effective

fiber/polymer composite are presented in terms of

nanotube length and nanotube volume fraction. While

the nanotube and effective fiber lengths are equal, the

nanotube volume fraction was determined to be 34% of

the effective fiber volume fraction if it is assumed that

the nanotube volume as a hollow cylinder with a wall

thickness of 0.34 nm. For the aligned and random case,

the longitudinal Young's and shear modulus were

calculated. The properties of the random composite

were calculated for nanotube lengths up to 200 nm.

This maximum length was chosen based on the

decreased likelihood of a nanotube remaining straight

as the nanotube length exceeds 200 nm.

Figure 5 is a plot of the calculated Young's

modulus and shear modulus for the aligned composite

(longitudinal direction) and the random composite as a

function of nanotube length, for a 1% nanotube volume

fraction. These results indicate that the aligned

orientation has higher Young's modulus than the

random orientation for all nanotube lengths.

Conversely, for the shear modulus, the random

orientation provides greater stiffness than the aligned

case for all nanotube lengths. For both aligned and

random orientations, the shear modulus varies little for

nanotube lengths exceeding 30 nm while the Young's

modulus is continuously increasing as nanotube length

increases. The rate of increase of Young's modulus for

increasing nanotube length appears to decrease sharply

at approximately 75 nm.

The longitudinal Young's modulus of the aligned

composite is plotted in Figure 6 as a function of

nanotube volume fraction for three nanotube lengths.

Young's modulus increases with an increase in volume

fraction, with the most pronounced rate of increase

associated with nanotubes of length 50 nm or greater.

The dependence of the longitudinal Young's modulus
on the nanotube volume fraction becomes more linear

as the nanotube length increases.

Figure 7 is a plot of the Young's modulus and

the shear modulus for the random composite as a

function of nanotube volume fraction, for three

nanotube lengths. In general, an increase in nanotube
volume fraction results in increased moduli values. For

both the Young's and the shear moduli, increasing the

volume fraction for the short nanotubes of length near

10 nm provides little to no improvement in stiffness.

However, for nanotubes between 50 nm to 200 nm, an

equivalent stiffness can easily be obtained by trading

off a decrease in nanotube length for a small (2x or

less) change in volume fraction. Increasing the

nanotube length above 200 nm results in negligible

increases in modulus.

Summary and conclusions

In this study, a method has been presented for

linking atomistic simulations of nano-structured materials

to continuum models of the corresponding bulk material.

For a polymer composite system reinforced with single-

walled carbon nanotubes (SWNT), the method provides

the steps whereby the nanotube, the local polymer near

the nanotube, and the nanotube/polymer interface can be

modeled as an effective continuum fiber by using an

equivalent-continuum model. The effective fiber retains

the local molecular stzucture and bonding information, as

defined by molecular dynamics, and serves as a means for

linking the equivalent-continuum and micromechanics

models. The micromechanics method is then available for

the prediction of bulk mechanical properties of

SWNT/polymer composites as a function of nanotube

size, orientation, and volume fraction. The utility of this

method was examined by modeling a SWNT/LaRC-SI

composite with a PmPV interface. The elastic stiffness

constants of the composite were determined for both

aligned and three-dimensional randomly oriented

nanotubes, as a function of nanotube length and volume
fraction.

For the aligned composite at 1% nanotube

volume fraction, stiffness will approach a maximum for

nanotube lengths of 75 nm or greater. Lengths above

this 75 nm range will also provide the most efficient

increase in modulus for small changes in nanotube

volume fraction. As length increases above 75 nm,

there is a limiting value such that small gains are

realized for lengths above approximately 200nm. This

limiting value indicates that for nanotube lengths of

approximately 200 nm, the efficiency of load transfer is

nearly maximized. For long nanotubes (500 nm), the

relationship between stiffness and volume fraction is

linear, which resembles the usual rule-of-mixtures

approximation for long-fiber composites. For short

nanotubes (10 nm), the volume fraction must exceed

10% before stiffness gains can be obtained.
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As for the aligned case, the 1% nanotube volume

fraction, randomly oriented composite has maximum

stiffness for nanotube lengths of approximately 75 nm

or longer. However, unlike the aligned case,

measurable shear-stiffness gains of at least 100% can be
realized for small volume fractions.

For many nano-structured materials, the trade-

offs between structure and property must be established

before the material can be optimized for any given

application. The method presented in this paper

provides a means for parametrically exploring these

structure-property relationships. The method is

applicable to a wide range of problems that require the

accuracy of atomistic level descriptions coupled with

the general applicability of continuum-level models.
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Table 1. Bond stretching parameters

K p

Bond stretching P (_) (kcal/mole/_2)

Ct - Ct 1.529 268.0

Ct - Ht 1.090 340.0

Ct - O 1.415 201.4

Ca - O 1.355 431.6

Ca - Ca 1.400 469.0

Ca - Ha 1.080 367.0

Ca - Cv 1.320 520.0

Cv - Cv 1.320 520.0

Cv - Hv 1.080 367.0
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Table 2. Bond angle variation parameters

K °

O (deg) (kcal/mole/rad:)

Bond-angle

variation

C t - C t- C t 112.7

C t - C t- H t 110.7

Ct - Ct- O 107.5

Ht - Ct- Ht 107.8

Ht - Ct- O 108.9

Cv - Cv - Hv 120.0

Cv - Cv - Ca 120.0

Hv - Cv - Hv 120.0

Hv - Cv - Ca 120.0

Cv - Ca - Ca 120.0

Ca - Ca - Ca 120.0

Ca - Ca - Ha 120.0

Ca - Ca - O 121.9

Ct- O - Ca 108.9

58.4

37.5

59.7

33.0

59.0

40.0

50.0

40.0

40.0

50.0

63.0

35.0

43.2

49.6

Table 3. Van der Waals interaction mrameters

Van der Waals
D I (kcal/mole) pi (_)

interaction

0.066

0.030

0.140

0.070

0.030

0.076

0.030

Ct

Ht
O

Ca

Ha

Cv

Hv

3.50

2.50

2.90

3.55

2.42

3.55

2.42

Table 4. Boundar

Property

Transverse shear

modulus, G_

Transverse bulk

modulus, Krs

Longitudinal shear

modulus, G[

conditions for the five independent elastic properties

Boundary conditions

(unspecified strain

components are zero)

I_23 ---- 'y/2

1_22 = 1_33 = e

Boundary

displacements/

tractions

/gl=0

7 x
_/2 z 7 3

7 x
_/3 z7 2

/gl=0

_/2 z ex 2

//3 z cx 3

/gl =_" 2

7 x
//2 _5 1

u3=0

Strain Energy

8

=L  LKie
2

8

/Ill = ex1

Longitudinal Young's Ell = e 1 r
modulus, V _22 : (_33 : 0 T 2 = 0 Ef = -M)2LE2e28

T3=0

Elastic Stiffness /gl z ex 1 1

= e b!2 = 0 E s = "-:-_D2LCSe 2Ell
Component, C_ 8

u3=0
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Table 5. Effective fiber independent parameters

and elastic stiffness components

@ = 4.4 GPa

/cS = 9.9 GPa

G[ = 27.0 GPa

Y[ = 450.4 GPa

C_ = 457.6 GPa

c£ = 8.4 GPa

c£ = 14.3 GPa

c£ = 5.5 GPa

c_ = 27.0 GPa

Bond

stretching

Torsion

Bond-angle variation

Non-bonded interaction /

Figure 1. Molecular mechanics modeling

Ha Ha

\ /
Ca--Ca

/ \
Ha--Ca Ca

Ct(Ht) 3 _ /

/Ct'_l'-O Cv=Cv Ha

, J7\ / \
Ca--Ca Hv

/ \
Ha--Ca Ca--Ha

\ /
Ca--Ca

_O_a_C< 1 7

Ct(Ht) 3

Figure 2. PmPV molecular structure

}%
Molecular

model

RVE Boundary region

Equivalent-truss
model

x 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Equivalent-
continuum model

Figure 3. Equivalent-continuum modeling of effective fiber
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Effective fiber
Polymer matrix

aligned effective fibers 3-D random effective fibers

Figure 4. Orientation of effective fibers in the composite material
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